Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Resour Manag ; 1(2): 237-249, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414817

RESUMO

During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40-135 °C) and time (10-70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes.

2.
Int J Biol Macromol ; 261(Pt 2): 129753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286369

RESUMO

Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.


Assuntos
Lignina , Nanoestruturas , Lignina/metabolismo , Polifenóis , Antibacterianos/farmacologia
3.
Phys Chem Chem Phys ; 26(3): 2111-2126, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131449

RESUMO

The deleterious impact of Helicobacter pylori (H. pylori) on human health is contingent upon its ability to create and sustain colony structure, which in turn is dictated by the effective performance of flagella - a multi-protein rotary nanodevice. Hence, to design an effective therapeutic strategy against H. pylori, we here conducted a systematic search for an effective druggable site by focusing on the structure-dynamics-energetics-stability landscape of the junction points of three 1 : 1 protein complexes (FliFC-FliGN, FliGM-FliMM, and FliYC-FliNC) that contribute mainly to the rotary motion of the flagella via the transformation of information along the junctions over a wide range of pH values operative in the stomach (from neutral to acidic). We applied a gamut of physiologically relevant perturbations in the form of thermal scanning and mechanical force to sample the entire quasi - and non-equilibrium conformational spaces available for the protein complexes under neutral and acidic pH conditions. Our perturbation-induced magnification of conformational distortion approach identified pH-independent protein sequence-specific evolution of precise thermally labile segments, which dictate the specific thermal unfolding mechanism of each complex and this complex-specific pH-independent structural disruption notion remains consistent under mechanical stress as well. Complementing the above observations with the relative rank-ordering of estimated equilibrium binding free energies between two protein sequences of a specific complex quantifies the extent of structure-stability modulation due to pH alteration, rationalizes the exceptional stability of H. pylori under acidic pH conditions, and identifies the pH-independent complex-sequence-segment-residue diagram for targeted drug design.


Assuntos
Helicobacter pylori , Humanos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Helicobacter pylori/química , Helicobacter pylori/efeitos dos fármacos
4.
J Phys Chem B ; 127(39): 8317-8330, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37734054

RESUMO

The emergence of a novel cross-α fibrillar structure, unlike the commonly observed sequence-independent cross-ß one, of a 22-residue bacterial virulent amphipathic α-helical peptide of the phenol soluble modulin (PSM) family, PSMα3, with many deleterious effects on human life, has infused uncertainty to the paradigm of the intrinsically polymorphic, multivariate, multiphasic, and cross-sequence-cross-disease entangled protein aggregation landscape and hence on the identity of the therapeutic target. We, here, deconvolute the factors contributing to the genesis and hence the transition of lower to higher order aggregates of PSMα3 in its natural state and three noncanonical designed variants using conventional and enhanced sampling approach-based atomistic simulations. PSMα3 shows structural polymorphism with nominal α-helicity, substantial ß-propensity, and dominant random-coil features, irrespective of the extent of aggregation. Moreover, the individual features of the overall amphipathicity operate alternatively depending on the extent and organization of aggregation; the dominance gradually moves from charged to hydrophobic residues with the progressive generation of higher order aggregates (dimer to oligomer to fibril) and with increasing orderedness of the self-assembled construct (oligomer vs dimer/fibril). Similarly, the contribution of interchain salt bridges decreases with increasing order of aggregation (dimer to oligomer to fibril). However, the intrachain salt bridges consistently display their role in all phases of aggregation. Such phase-independent features also include equivalent roles of electrostatic and van der Waals forces on intrachain interactions, sole contribution of van der Waals forces on interchain cross-talk, and negligible peptide-water relationship. Finally, we propose a conjugate peptide-based aggregation suppressor having a single-point proline mutation.

5.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551804

RESUMO

Whether single-molecule trajectories, observed experimentally or in molecular simulations, can be described using simple models such as biased diffusion is a subject of considerable debate. Memory effects and anomalous diffusion have been reported in a number of studies, but directly inferring such effects from trajectories, especially given limited temporal and/or spatial resolution, has been a challenge. Recently, we proposed that this can be achieved with information-theoretical analysis of trajectories, which is based on the general observation that non-Markov effects make trajectories more predictable and, thus, more "compressible" by lossless compression algorithms. Toy models where discrete molecular states evolve in time were shown to be amenable to such analysis, but its application to continuous trajectories presents a challenge: the trajectories need to be digitized first, and digitization itself introduces non-Markov effects that depend on the specifics of how trajectories are sampled. Here we develop a milestoning-based method for information-theoretical analysis of continuous trajectories and show its utility in application to Markov and non-Markov models and to trajectories obtained from molecular simulations.

6.
Heliyon ; 9(8): e18383, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520963

RESUMO

This research was done to evaluate the feasibility of using Albizia procera for manufacturing glulam beams. The physical and mechanical properties of the A. procera glulam beam were evaluated, and these properties were compared to those of the solid A. procera solid timber. The A. procera glulam beam's physical and mechanical properties were all superior to solid A. procera timber. In comparison to A. procera solid timber, A. procera glulam's density, water absorption (WA), linear expansion (LE), and thickness swelling (TS) all improved by 11.1, 48.4, 44.6, and 37.0%, respectively. Again, compared to A. procera solid timber, the modulus of rupture (MOR) and modulus of elasticity (MOE) of the A. procera glulam beam increased by 27.6 and 29.2%, respectively. Additionally, the ASTM specifications were met by the A. procera glulam beam. As a result, based on the properties, it is possible to make A. procera glulam beams as structural timber products.

7.
Biochemistry ; 62(12): 1890-1905, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37246507

RESUMO

The mechanism of protein aggregation can be broadly viewed as a shift from the native-state stabilizing intramolecular to the aggregated-phase sustaining intermolecular interactions. Understanding the role of electrostatic forces on the extent of modulation of this switch has recently evolved as a topic of monumental significance as protein aggregation has lately been connected to charge modifications of an aging proteome. To decipher the distinctive role of electrostatic forces on the extremely complicated phase separation landscape, we opted for a combined in vitro-in silico approach to ascertain the structure-dynamics-stability-aggregability relationship of the functional tandem RRM domains of the ALS-related protein TDP-43 (TDP-43tRRM), under a bivariate solution condition in terms of pH and salt concentration. Under acidic pH conditions, the native TDP-43tRRM protein creates an aggregation-prone entropically favorable partially unfolded conformational landscape due to enthalpic destabilization caused by the protonation of the buried ionizable residues and consequent overwhelming fluctuations of selective segments of the sequence leading to anti-correlated movements of the two domains of the protein. The evolved fluffy ensemble with a comparatively exposed backbone then easily interacts with incoming protein molecules in the presence of salt via typical amyloid-aggregate-like intermolecular backbone hydrogen bonds with a considerable contribution originating from the dispersion forces. Subsequent exposure to excess salt at low pH conditions expedites the aggregation process via an electrostatic screening mechanism where salt shows preferential binding to the positively charged side chain. The applied target observable-specific approach complementarity unveils the hidden information landscape of an otherwise complex process with unquestionable conviction.


Assuntos
Amiloide , Agregados Proteicos , Eletricidade Estática , Amiloide/química , Proteínas Amiloidogênicas , Proteínas de Ligação a DNA/química , Dobramento de Proteína
8.
J Fluoresc ; 33(6): 2229-2239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37004622

RESUMO

Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy's statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.

9.
Heliyon ; 9(1): e13028, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36820173

RESUMO

The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration for their application in energy storage devices because of their specific electrochemical properties. Cellulose-based bionanocomposites have added a new dimension to this field since these are developed from available renewable biomaterials. Studies on developing electrodes, separators, collectors, and electrolytes for the batteries have been conducted based on these composites rigorously. Electrodes and separators made of these composites for the supercapacitors have also been investigated. Researchers have used a wide range of micro- and nano-structural cellulose along with nanostructured inorganic materials to produce cellulose-based bionanocomposites for energy devices, i.e., supercapacitors and batteries. The presence of cellulosic materials enhances the loading capacity of active materials and uniform porous structure in the electrode matrix. Thus, it has shown improved electrochemical properties. Therefore, these can help to develop biodegradable, lightweight, malleable, and strong energy storage devices. In this review article, the manufacturing process, properties, applications, and possible opportunities of cellulose-based bionanocomposites in energy storage devices have been emphasized. Its challenges and opportunities have also been discussed.

10.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839674

RESUMO

Multiple daily injections via subcutaneous route are the primary modes of insulin delivery for patients with Diabetes Mellitus. While this process is invasive, painful and may cause patients to develop lipohypertrophy at injection site, the perception of fear surrounding this process causes patients to delay in initiation and remain persistent with insulin therapy over time. Moreover, poor glycemic control may often lead to acute complications, such as severe hypoglycemia and nocturnal hypoglycemia, especially in older patients with diabetes. To address the imperative need for a patient-convenient non-invasive insulin therapy, an insulin-loaded arginine-coated self-emulsifying nanoglobule system (INS-LANano) was developed for nasal delivery of insulin with a biodegradable cationic surfactant-Lauroyl Ethyl Arginate (LAE). Incorporation of LAE resulted in formation of positively charged nanoglobules with L-arginine oriented on the surface. LANano enabled binding of insulin molecules on the surface of nanoglobules via an electrostatic interaction between negatively charged α-helix and LAE molecules at physiological pH. INS-LANano showed a hydrodynamic diameter of 23.38 nm with a surface charge of +0.118 mV. The binding efficiency of insulin on LANano globules was confirmed by zeta potential, circular dichroism (CD) spectroscopy and centrifugal ultrafiltration studies. The attachment of insulin with permeation-enhancing nanoglobules demonstrated significantly higher in vitro permeability of insulin of 15.2% compared to insulin solution across human airway epithelial cell (Calu-3) monolayer. Upon intranasal administration of INS-LANano to diabetic rats at 2 IU/kg insulin dose, a rapid absorption of insulin with significantly higher Cmax of 14.3 mU/L and relative bioavailability (BA) of 23.3% was observed. Therefore, the INS-LANano formulation significant translational potential for intranasal delivery of insulin.

11.
Biochim Biophys Acta Proteins Proteom ; 1871(1): 140866, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272537

RESUMO

One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Termodinâmica , Prolina
12.
Proteins ; 91(3): 380-394, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208132

RESUMO

The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.


Assuntos
Doenças Neurodegenerativas , Proteínas Nucleares , Humanos , Ataxina-1/genética , Ataxina-1/química , Ataxina-1/metabolismo , Ataxinas , Proteínas Nucleares/química , Proteínas do Tecido Nervoso/química
13.
Biochemistry ; 62(2): 451-461, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36573496

RESUMO

The acid-base behavior of amino acids plays critical roles in several biochemical processes. Depending on the interactions with the protein environment, the pKa values of these amino acids shift from their respective solution values. As the side chains interact with the polypeptide backbone, a pH-induced change in the protonation state of aspartic and glutamic acids might significantly influence the structure and stability of a protein. In this work, we have combined two-dimensional infrared spectroscopy and molecular dynamics simulations to elucidate the pH-induced structural changes in an antimicrobial enzyme, lysozyme, over a wide range of pH. Simultaneous measurements of the carbonyl signals arising from the backbone and the acidic side chains provide detailed information about the pH dependence of the local and global structural features. An excellent agreement between the experimental and the computational results allowed us to obtain a residue-specific molecular understanding. Although lysozyme retains the helical structure for the entire pH range, one distinct loop region (residues 65-75) undergoes local structural deformation at low pH. Interestingly, combining our experiments and simulations, we have identified the aspartic acid residues in lysozyme, which are influenced the most/least by pH modulation.


Assuntos
Muramidase , Proteínas , Concentração de Íons de Hidrogênio , Proteínas/química , Aminoácidos , Ácido Aspártico/química
14.
Sci Rep ; 12(1): 22405, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575290

RESUMO

Mechanical and corrosion properties of welded duplex stainless steel (DSS) structures are of paramount consideration in many engineering applications. The current research investigates the mechanical properties and corrosion integrity of duplex stainless-steel weldment in a simulated 3.5% NaCl environment using specially developed novel electrodes without the addition of alloying elements to the flux samples. Two different types of fluxes having basicity indexes of 2.40 and 0.40 were used to coat E1 and E2 electrodes respectively for DSS plate welding. The thermal stability of the formulated flux was evaluated using thermogravimetric analysis. The chemical composition, using optical emission spectroscopy, and the mechanical and corrosion properties of the welded joints were evaluated as per different ASTM standards. X-ray diffraction was used to find out the phases present in the DSS welded joints while a scanning electron equipped with EDS was used for microstructural examination of the weldments. The ultimate tensile strength of welded joints made using the E1 electrode was in the range of 715-732 MPa and that of the E2 electrode was found to be 606-687 MPa. The hardness was increased with increased welding current from 90 to 110 A. The welded joint with E1 electrode coated with basic flux has better mechanical properties. The steel structure in 3.5% NaCl environment possesses substantial resistance to corrosion attack. This validates the performance of the welded joints made by the newly developed electrode. The results are discussed on the basis of the depletion of alloying elements such as Cr and Mo observed from the weldments with the coated electrodes E1 and E2 as well as precipitation of the Cr2N in the welded joints made by E1 and E2 electrodes.

15.
ACS Omega ; 7(43): 39370-39374, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340150

RESUMO

Melocanna baccifera is the most common bamboo species which grows naturally and gregariously covering large tracts of land in the forests of Chittagong Hill Tracts of Bangladesh. However, there is limited information about the chemical characterization of its culms for its utilization and processing. This paper aimed to determine the effect of age and height position on the chemical properties of M. baccifera. The highest value of holocellulose content was 74.66% for the top portion of 3-year-old bamboo, while the bottom part of 3-year-old bamboo showed the highest value of lignin (27.83%) and extractive (5.24%) content. For caustic soda (1% NaOH) solubility, the bottom portion of 1-year-old bamboo had shown the maximum value (25.67%), and it was the lowest (19.10%) for the top portion of 3-year-old bamboo. Ageing had a significant (p < 0.05) effect on all chemical properties, while the height position had a significant effect on the holocellulose and lignin content and water solubility. The chemical properties of M. baccifera can enable its proper utilization in the downstream process.

16.
Heliyon ; 8(8): e10360, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061006

RESUMO

Anthocephalus chinensis (Lam.) A. Rich ex Walp is widely used as raw materials in particleboard and match industries in Bangladesh. The current study aimed to identify the drying characteristics of A. Chinensis wood for succeeding industrial usages. A compartment kiln dryer (heat and vent dryer) was used in this study. The drying characteristics and drying quality of A. Chinensis wood were measured. The boards reached 6-10% moisture content in 13 days from their green condition. The total proportions of the check, twist, and collapse in boards were 22.5, 32.5, and 7.3%, respectively. The volumetric shrinkage was 21.67%. Based on this study, further study may help to develop a complete drying schedule of A. Chinensis wood with fewer drying defects for application at industrial level.

17.
ACS Chem Neurosci ; 13(14): 2191-2208, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767676

RESUMO

Alzheimer's disease is undoubtedly the most well-studied neurodegenerative disease. Consequently, the amyloid-ß (Aß) protein ranks at the top in terms of getting attention from the scientific community for structural property-based characterization. Even after decades of extensive research, there is existing volatility in terms of understanding and hence the effective tackling procedures against the disease that arises due to the lack of knowledge of both specific target- and site-specific drugs. Here, we develop a multidimensional approach based on the characterization of the common static-dynamic-thermodynamic trait of the monomeric protein, which efficiently identifies a small target sequence that contains an inherent tendency to misfold and consequently aggregate. The robustness of the identification of the target sequence comes with an abundance of a priori knowledge about the length and sequence of the target and hence guides toward effective designing of the target-specific drug with a very low probability of bottleneck and failure. Based on the target sequence information, we further identified a specific mutant that showed the maximum potential to act as a destabilizer of the monomeric protein as well as enormous success as an aggregation suppressor. We eventually tested the drug efficacy by estimating the extent of modulation of binding affinity existing within the fibrillar form of the Aß protein due to a single-point mutation and hence provided a proof of concept of the entire protocol.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Humanos
18.
J Phys Chem B ; 125(44): 12177-12186, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723517

RESUMO

One of the prevailing life-threatening incurable neurodegenerative diseases that are presently endangering human society as a whole, and hence, baffling the entire spectrum of the scientific and pharmaceutical world, is Alzheimer's disease (AD). AD is a manifestation of self-assembly of both wild-type (sporadic) and mutated (familial) forms of the amyloid-ß peptide, a proteolytic product of the amyloid precursor protein, where the self-assembly results in the genesis of pathogenic fibrillar aggregates. Currently prevailing diagnostic and hence therapeutic challenges originate from the unavailability of a specific predictor for clinical observables. The continuous emergence of novel pathogenic mutants with unpredictable phenotypes adds immensely to the nonspecific nature of the problem. The current research reports a simple physical parameter, the binding affinity of a protofilament to its protofibril, which predicts the clinical observables of familial AD with astounding accuracy and more importantly, without any adjustable parameters.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Humanos
19.
Glob Chall ; 5(9): 2100002, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34504715

RESUMO

This study investigates the efficacy of chemically modified bone adhesive as a formaldehyde-free binder for wood-based industries. Two different types of adhesive are formulated after chemical modification of bone powder using sulfuric acid (0.5 m) and polyvinyl acetate (PVA). Gel time, solid content, Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), viscosity, and single lap joint test for shear strength are analyzed in order to assess the adhesive properties. To analyze the efficacy of the formulated adhesive, particleboards are fabricated using boiled and unboiled sugarcane bagasse. The physical and mechanical properties of the fabricated panels are measured following ASTM standards. It is found that adhesive Type C (T-C) has the shortest gel time of 4.2 min for the highest shear strength, i.e., 5.31 MPa. The particleboard (BTC-2) fabricated using T-C adhesive shows a highest density of 0.73 g cm-3, a modulus of elasticity (MOE) of 1975 N mm-2, and a modulus of rupture (MOR) of 11.80 N mm-2. The dimensional stability of the fabricated particleboards does not follow the standard requirements; however, further study might be helpful for using the chemically modified bone adhesive as a biobased adhesive.

20.
Glob Chall ; 5(6): 2000044, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141444

RESUMO

In this study, defatted rice bran (RB) is used to prepare an environmentally friendly adhesive through chemical modifications. The RB is mixed with distilled water with ratios of 1:5 and 1:4 to prepare Type A and Type B adhesives, respectively having pH of 6, 8 and 10. Type A adhesive is prepared by treating RB with 1% potassium permanganate and 4% poly(vinyl alcohol), whereas Type B is formulated by adding 17.3% formaldehyde and 5.7% urea to RB. Viscosity, gel time, solid content, shear strength, Fourier transform infrared (FTIR) spectroscopy is carried out, and glass transition temperature (T g), and activation energy (E a) are determined to evaluate the performance of the adhesives. E a data reveal that adhesives prepared at mild alkaline (pH 8) form long-chain polymers. Gel time is higher in the fabricated adhesives than that of the commercial urea formaldehyde (UF). FTIR data suggest that functional groups of the raw RB are chemically modified, which enhances the bondability of the adhesives. Shear strength data indicates that bonding strength increases with increasing pH. Similar results are also observed for physical and mechanical properties of fabricated particleboards with the adhesives. The results demonstrate that RB-based adhesives can be used as a potential alternative to currently used UF-based resin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...